Library
  • XR Guild Library 2.0
  • AI Ethics
    • Artificial Intelligence and the Future of Work: Mapping the Ethical Issues
    • Why the Godfather of AI Now Fears His Creation
    • Is 'Ethical AI' a Fantasy? - TRIP Annual Symposium 2024
    • Publics’ views on ethical challenges of artificial intelligence: a scoping review
    • Ethics in AI Seminar: Responsible Research and Publication in AI
    • Trustworthy AI and Ethics with IBM Consulting's Phaedra Boinodiris
    • AI is an energy hog. This is what it means for climate change.
    • Non-Consensual Synthetic Intimate Imagery: Prevalence, Attitudes, and Knowledge in 10 Countries
    • Unraveling the Ethical Conundrum of Artificial Intelligence: A Synthesis of Literature and Case Stud
    • Ethics of AI: Challenges and Governance
    • AI hiring tools may be filtering out the best job applicants
    • AI Ethics: A Bibliometric Analysis, Critical Issues, and Key Gaps
    • Tackling problems, harvesting benefits -- A systematic review of the regulatory debate around AI
    • Global Dialogues on AI
    • UN Global Digital Compact
  • Current Peer-Reviewed Immersive Technologies
    • Towards Understanding Diminished Reality
    • BlendMR: A Computational Method To Create Ambient Mixed Reality Interfaces
    • RealityReplay: Detecting and Replaying Temporal Changes In Situ using Mixed Reality
    • A Survey on Remote Assistance and Training in Mixed Reality Environments
    • SemanticAdapt: Optimization-based Adaptation of Mixed Reality Layouts Leveraging Virtual-Physical Se
    • Auptimize: Optimal Placement of Spatial Audio Cues for Extended Reality
    • TurnAware: Motion-aware Augmented Reality Information Delivery While Walking
    • SecureMR - Security and Privacy for Camera Access in XR Applications
    • The Poetics of Augmented Space
    • Integrating Immersive Technologies with STEM Education
    • Educational Administration: Theory and Practice
    • Immersive technologies as an innovative tool to increase academic success and motivation
    • Metaverse as a Cutting-edge Platform for Attaining Sustainable Development Goals (SDGs)
    • Defining immersion and immersive technologies
    • A bibliometric analysis of immersive technology in museum exhibitions: exploring user experience
    • The Combination of Artificial Intelligence and Extended Reality: A Systematic Review
    • Technology Integration Methods for Bi-directional Brain-computer Interfaces and XR-based Interventio
    • Towards an Eye-Brain-Computer Interface: Combining Gaze with the Stimulus-Preceding Negativity
    • Immersive interfaces for clinical applications: current status and future perspective
    • Hypersphere - XR Design for Metaverse by Synthesizing Neuro Reality and Virtual Reality
    • CAVE: An Emerging Immersive Technology - A Review
    • Experiences with a Virtual Reality System for Immersive Decision Making and Learning
    • Virtual Reality: How Much Immersion Is Enough?
  • Ethical Responsibility
    • Cybersecurity and Privacy Challenges in Extended Reality: Threats, Solutions, and Risk Mitigation...
    • The Poetics of Augmented Space
    • Ethical Considerations When Designing and Implementing Immersive Realities in Nursing Education
    • Ethical considerations in designing virtual and augmented reality products - virtual and augmented r
    • XRAI-Ethics: Towards a Robust Ethical Analysis Framework for Extended Artificial Intelligence
    • An XR Ethics Framework
    • Extended Reality (XR) and the Erosion of Anonymity and Privacy
    • Who Owns Our Second Lives: Virtual Clones and the Right to Your Identity
    • The IEEE Global Initiative on Ethics of Extended Reality (XR) Report - Metaverse and Its Governance
    • The Ethics of Realism in Virtual and Augmented Reality
    • Smart Workplaces for Older Adults: Coping 'Ethically' with Technology Pervasiveness - Ageing@Work an
    • 2089-2021 - IEEE Standard for an Age Appropriate Digital Services Framework Based on the 5Rights Pri
    • State of the Art in Ethics for AR
    • Mapping of the ethical Issues in XR-overview of Ethical Frameworks: A Scoping Review
    • Quality Considerations for Ethical Design of Virtual and Augmented Reality.
    • Beyond Speculation About the Ethics of Virtual Reality: The Need for Empirical Results
    • Getting rescued by RoboCop? Legal and ethical challenges of the use of extended reality in Frontex’s
    • Who will govern the metaverse? Examining governance initiatives for extended reality (XR) technologi
    • A Survey of Extended Reality (XR) Standards
  • XR Industry news/events/Sources
    • VRARA Events
    • XRSI News
    • IEEE News
    • XRA News
    • XR TODAY Events
    • VR Marketing News
    • MSF Newsroom
    • AWE Blog
    • OpenXR (Khronos Group)
    • CES
    • Augmented Reality for Enterprise Alliance
    • XR Fair Tokyo
    • Mobile World Congress
    • Stereopsia
    • XR Expo
    • Laval Virtual
    • XR & Metaverse Standards Register
    • XRWomen Research Library
  • Neurotechnology, Brain Tech, and Ethical Challenges
    • Brain augmentation and neuroscience technologies
    • U.S. Public Perceptions of the Sensitivity of Brain Data
    • Protecting Neural Data Privacy—First, Do No Harm
    • Neurotechnology: Current Developments and Ethical Issues
    • Karen Rommelfanger - Neuroethics and the Future of Neurotechnology
    • My Brain Made Me Buy It: The Neuroethics of Advertising - Exploring Ethics
    • IEEE Brain Episode 17: Q&A with Dr. Cristin Welle, Associate Professor, University of Colorado
    • Mindscape 229: Nita Farahany on Ethics, Law, and Neurotechnology
    • Ethics of Neurotechnology
    • Understanding the Ethical Issues of Brain-Computer Interfaces (BCIs): A Blessing or the Beginning of
    • Ethics and Governance of Neurotechnology in Africa: Lessons From AI
    • TED Radio Hour: Your brain is the next tech frontier
    • Use of Invasive Brain-Computer Interfaces in Pediatric Neurosurgery: Technical and Ethical Considera
    • FUTURES: Designing Brain-Computer Interfaces" with Conor Russomanno
    • Neurotechnology and the Battle for Your Brain
    • Ethical Frontiers: Navigating the Intersection of Neurotechnology and Cybersecurity
    • Neuroethics and AI Ethics: A Proposal for Collaboration
    • An Integrated Embodiment Concept Combines Neuroethics and AI Ethics
    • Neuroethics Today
  • Mind Control and Privacy at Work
    • Brain Recording, Mind-Reading, and Neurotechnology: Ethical Issues from Consumer Devices
    • The Convergence of Virtual Reality and Social Networks: Threats to Privacy and Autonomy
    • Ethics Emerging: the Story of Privacy and Security Perceptions in Virtual Reality
    • Neuroinsights in Immersive Worlds: Safeguarding Cognitive Freedom in Virtual Realms
    • Digital body, identity and privacy in social virtual reality: A systematic review
    • The concept “freedom” in a virtual reality of the information society
    • Freedom of Thinking in the Terms
    • Mind control: The metaverse may be the ultimate tool of persuasion
    • Metaverse in Mental Health: The Beginning of a Long History
    • “Playing God”: How the metaverse will challenge our very notion of free will
    • The Metaverse: the Ultimate Tool of Persuasion
    • Searching for the Metaverse: Neuroscience of Physical and Digital Communities
    • The neurosociological paradigm of the metaverse
    • Metaverse and Privacy
    • The enterprise metaverse, cognitive science, and interpersonal communication
    • The Metaverse: from Marketing to Mind Control
  • Physiological and Psychological effects of XR
    • Empathy and Perspective Taking
    • Building long-term empathy: A large-scale comparison of traditional and virtual reality...
    • A VIRTUAL SAFE SPACE? AN APPROACH OF INTERSECTIONALITY AND SOCIAL IDENTITY TO BEHAVIOR IN VIRTUAL...
    • Who Do You Think You Are? What Does Your Avatar Say About You?
    • LET'S CONNECT IN METAVERSE. BRAND'S NEW DESTINATION TO INCREASE CONSUMERS' AFFECTIVE BRAND...
    • The psychological impact of the Metaverse
    • The effect of virtual reality forest and urban environments on physiological and psychological...
    • The Effectiveness of Virtual Reality Exercise on Individual’s Physiological, Psychological and...
    • A perspective on potential psychological risks and solutions of using virtual reality in...
    • The impact of immersive virtual reality meditation for depression and anxiety among inpatients...
    • Digital body, identity and privacy in social virtual reality: A systematic review
    • Virtual Reality and Emotion: A 5-Year Systematic Review of Empirical Research
    • Virtual Reality Games and the Role of Body Involvement in Enhancing Positive Emotions and...
    • Empowering Social Growth Through Virtual Reality–Based Intervention for Children With Attention...
    • Influence of Avatar Identification on the Attraction of Virtual Reality Games: Survey Study
    • How Avatar Identification Affects Enjoyment in the Metaverse: The Roles of Avatar Customization...
    • Influence of Avatar Identification on the Attraction of Virtual Reality Games: Survey Study
    • Beyond the pixelated mirror: Understanding avatar identity and its impact on in-game advertising...
    • Exploring the user-avatar relationship in videogames: A systematic review of the Proteus effect
    • VR: A Path to Mental Wellness
  • Privacy & Policy
    • Voices Of VR #1091: IEEE XR Ethics: The Erosion of Privacy & Anonymity
    • Privacy and Ethical Considerations for Extended Reality Settings - On Tech Ethics
    • Rethinking Privacy in the AI Era
    • AI Data, Governance and Privacy: SYNERGIES AND AREAS OF INTERNATIONAL CO-OPERATION
    • Safety and Privacy in Immersive Extended Reality: An Analysis and Policy Recommendations
    • Cybersecurity and Privacy Challenges in Extended Reality: Threats, Solutions, and Risk Mitigation...
    • Extended Reality (XR) Ethics
    • Voices Of VR #997: Debating XR Privacy Tech Policy with Ellysse Dick
    • XR In the Classroom: Student Privacy and Safety
    • Augmenting Security and Privacy in the Virtual. Realm: An Analysis of Extended Reality Devices
    • Privacy Preservation in Artificial Intelligence and Extended Reality (AI-XR) Metaverses: A Survey
    • On Tech Ethics Podcast – Privacy and Ethical Considerations for Extended Reality Settings
    • OVRseen: Auditing Network Traffic and Privacy Policies in Oculus VR
    • Reality Check: Why the U.S. Government Should Nurture XR Development
    • The Tech Law Hangout
  • Security & Safety
    • Safety and Privacy in Immersive Extended Reality: An Analysis and Policy Recommendations
    • Implications of XR on Privacy, Security and Behaviour: Insights
    • XR Trends 2022 (11/12): XR Safety and Security
    • Futuristic Metaverse: Security and Counter Measures
    • Navigating the XR Educational Landscape: Privacy, Safety, and Ethical Guidelines
    • VR headsets may lead users to the ER
    • Concerns with Privacy in Virtual Reality
    • What are the Security and Privacy Risks of VR and AR
    • VR Risks For Kids And Teens
    • We Share Pro Tips To Implement VR Industrial Training Successfully
    • Virtual Reality Headsets
    • Voices Of VR #786: XR Safety Initiative: Security, Privacy, & Ethics in XR
    • XR and AI for Security and Privacy with Luis Bravo Martins
    • AMXRA Guidelines on Extended Reality and Children
  • Glossary
  • Archive
    • Videos
      • XR Guild
      • Rolando Masís-Obando (XRMasiso)
      • Avi Bar-Zeev
      • Louis Rosenberg
      • Sarah A. Barker
        • VR| A Path to Mental Wellness: Meet VR Experience Designer Owen Harris
        • VR: A Path to Mental Wellness: Meet VR Experience Designer Owen Harris
        • VR: A Path to Mental Wellness: Meet Brennan Spiegel
    • Extended Principles
    • Newsletters
      • Metaversethics.org
    • Podcasts
      • Voices of VR Podcast
      • VR: A Path to Mental Wellness
      • The Virtual World Society Podcast
      • Experiment: Google NotebookLM version of existing works
    • Written Works
      • ACM Whitepapers on Ethics
      • IEEE Whitepapers on Ethics
      • Louis Rosenberg
      • Brittan Heller
      • Avi Bar-Zeev
      • Nita Farahany
      • W3C Papers and Principles
      • Additional Papers
    • XR Guild Library Database
      • Issues around Safety
      • Physiological and Psychological effects of XR
      • Industry news/implications
      • Data Privacy & Policy
      • Current Peer-Reviewed Immersive Technologies, Human Psychology and Ethics
    • Science and Ethics Council Topics
      • Cybersickness and Nauseation
      • Accessibility
      • Brain Computer Interfaces
      • The Magic (and Limits) of Human Visual Perception
      • Conversational Agents
Powered by GitBook
On this page
  • How does Human Vision Work (and Not Work)?
  • Seeing Everything Live vs. Recalling from Short-Term Memory
  1. Archive
  2. Science and Ethics Council Topics

The Magic (and Limits) of Human Visual Perception

We'll look at the often limited ways we perceive the world and how those limitations allow for experts and algorithms to bypass our cognitive filters.

Last updated 7 months ago

This article is derived from the original article (Advertising's Holy Grail)" by Avi Bar-Zeev, published on the website Motherboard.com in 2019 and then updated and expanded on

How does Human Vision Work (and Not Work)?

Starting at the most basic level, our retinas sit in the back of our eyes, turning the light they receive into signals our brain can interpret, so that we can “see.”

Our retinas have specialized areas, evolved to help us survive.

Our foveae see only a small part of the elephant at any given time, while our brains reconstruct a full image as we scan around. The green line is our horizon estimate.

The highest-resolution areas, called “foveae,” cover a very small circle, reaching about five degrees from center.

Most of your vision is called “peripheral,” going out to about 220 degrees. The peripheral areas are good at sensing motion and important survival patterns like horizons, lurking shadows and other pairs of eyes looking back at us. But in the periphery, surprisingly, we see very little color or fine detail.

All of the words on this page hopefully look sharp. But your brain is deceiving you. You’re really only able to focus clearly on a word or two at any given time.

To maintain the illusion of high detail everywhere, our eyes dart around, scanning the scene like a flashlight in the dark, building up a picture of the world over time. The peripheral detail is mostly remembered and imagined.

Computers can be trained to track and understand these movements. The better systems are able to distinguish between two or more visual targets that are only half a degree apart, as measured by imaginary lines drawn from each eye. But even lower-precision eye-tracking (1–2 degrees) can help infer a user’s intent and/or health.

Seeing Everything Live vs. Recalling from Short-Term Memory

If you temporarily suppress your own saccades, as in the above video experiment, you can begin to understand how limited our peripheral vision really is. By staring at the central dot, your brain is unable to maintain the illusion of “seeing” everywhere at once. Your perception and memory of the periphery starts to quickly drift, especially when the scene changes to two new faces, causing a temporarily grotesque appearance for even the “world’s sexiest” people. No, the video didn't suddenly get ugly, it's your brain not keeping up with the information on screen (until you foveate the new faces).

It turns out that your gaze can also be externally manipulated to a surprising degree.

Since saccades help us take in new details, any motion in our local environment may draw our gaze. In the wild, detecting such motion could be vital to survival.

Illusionists and magicians use this feature to distract us from their sleight of hand, moving their hands dramatically to draw our gaze. Even more subtly, our eyes will naturally follow the magician’s own gaze, as if to see what they see. This is a very common social behavior called “joint attention.”

Luring our gaze is also useful for storytelling, where movie directors can’t aim and focus our eyes like they might for a camera on the movie set. They count on us seeing what they intend us to see in every shot.

Visual and UI designers similarly design websites and apps that try to constructively lead our gaze, controlling placement, whitespace, and font sizes so that we might notice the most important UI elements first and understand what actions to take more intuitively than if we had to scan everywhere and build a mental map.

During this frequent short blindness, researchers can opportunistically change the world around us.

Like magicians, they can swap out one whole object for another, remove something, or rotate an entire (virtual) world around us. If they simply zapped an object, you’d likely notice. But if they do it while you blink or are in a saccade, you most likely won’t.

That last bit may be useful for future Virtual Reality systems, where you are typically wearing an HMD in an office or living room. If you tried to walk in a straight line in VR, you’d likely walk into a table or wall IRL. “Guardian” systems try to prevent this by visually warning you to stop.

With “redirected walking,” you’d believe that you’re walking straight, while you are actually being lured on a safer cyclical path through your room, using a series of small rotations and visual distractors inside the headset.

In this last video example, we can see the experimenter/host literally swaps himself out for someone else, mid-conversation, on a public street. With suitable distractions, the subject of the experiment doesn’t notice.

The bottom line is that we see much less than we think we do.

Those rapidly darting eye motions are called “.” Their patterns can tell a computer a lot about what we see, how we think, and what we know. They show what we’re aware of and focusing on at any given time. In addition to saccades, your eyes also make “smooth pursuit” movements, for example while tracking a moving car or baseball. Your eyes make other small corrections quite often, without you noticing.

, we are essentially blind while our eyes are in saccadic motion. This blindness is useful, as the world would otherwise appear blurry and confusing quite often. These natural saccades happen about once a second on average. And we almost never notice.

saccades
Remarkably
"The Eyes are the Prize
Medium.com